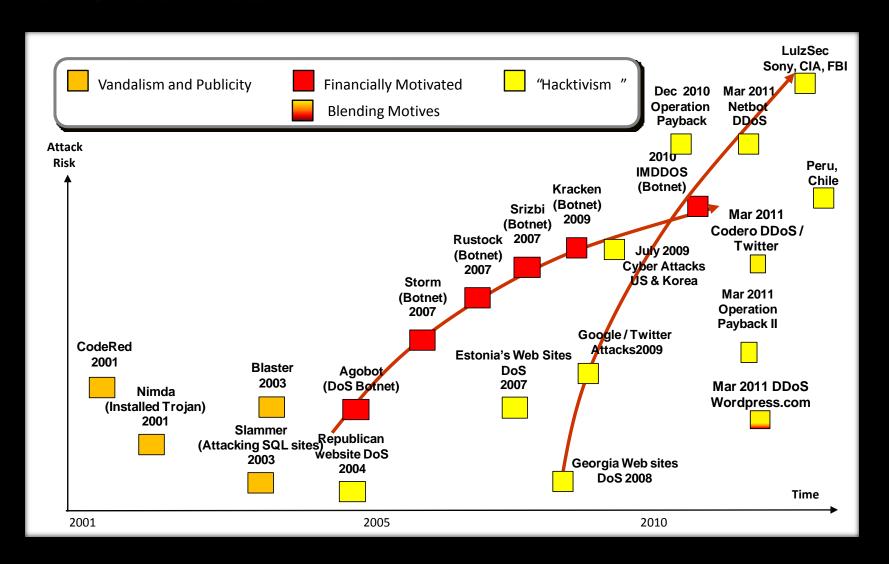


The Evolving Threat Landscape
Anatomy of an Attack
Securing Tomorrow's Perimeter

The Evolving Threat Landscape

More Attacks. More Often.


Operation Abibal

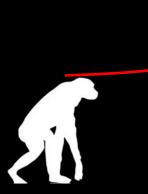
1	JPMORGAN CHASE & CO. (1039502) - attacked	NEW YORK, NY
2	BANK OF AMERICA CORPORATION (1073757) - attacked	CHARLOTTE, NC
3	CITIGROUP INC. (1951350) - attacked	NEW YORK, NY
4	WELLS FARGO & COMPANY (1120754) - attacked	SAN FRANCISCO, CA
5	GOLDMAN SACHS GROUP, INC., THE (2380443)	NEW YORK, NY
6	METLIFE, INC. (2945824)	NEW YORK, NY
7	MORGAN STANLEY (2162966)	NEW YORK, NY
8	<u>U.S. BANCORP (1119794)</u> - attacked	MINNEAPOLIS, MN
9	BANK OF NEW YORK MELLON CORPORATION, THE (3587146) - attacked	NEW YORK, NY
10	HSBC NORTH AMERICA HOLDINGS INC. (3232316)	NEW YORK, NY
	PNC FINANCIAL SERVICES GROUP, INC., THE (1069778) - attacked	PITTSBURGH, PA
12	CAPITAL ONE FINANCIAL CORPORATION (2277860)	MCLEAN, VA
13	TD BANK US HOLDING COMPANY (1249196) - attacked	PORTLAND, ME
14	STATE STREET CORPORATION (1111435)	BOSTON, MA
15	ALLY FINANCIAL INC. (1562859)	DETROIT, MI
16	BB&T CORPORATION (1074156) - attacked	WINSTON-SALEM, NC
17	SUNTRUST BANKS, INC. (1131787)	ATLANTA, GA
18	PRINCIPAL FINANCIAL GROUP, INC. (3853449)	DES MOINES, IA
19	AMERICAN EXPRESS COMPANY (1275216)	NEW YORK, NY
20	AMERIPRISE FINANCIAL, INC. (2433312)	MINNEAPOLIS, MN

Attack Motivation

Hacktivism - Becomes More Campaign-APT Oriented

- Complex: More than seven different attack vectors at once
- Blending: both network and application attacks
- Targeteering: Select the most appropriate target, attack tools,
- **Resourcing:** Advertise, invite, coerce anyone capable ...
- **Testing:** Perform short "proof-firing" prior to the attack

Hacktivism - Becomes More Campaign-APT Oriented


- Duration: 20 Days
- More than 7 Attack vectors
- "Inner cycle" involvement

Attack target: Vatican

- Duration: 3 Days
- 5 Attack vectors
- Only "inner cycle" involvement
- Attack target: HKEX
- Duration: 3 Days
- 4 Attack vectors
- Attack target: Visa, MasterCard

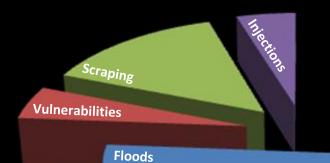
- Duration: 6 Days
- 5 Attack vectors
- "Inner cycle" involvement Attack target: **Israeli sites**

The Anonymous Arms Race



Network	Application Flood	Low & Slow	Vulnerability Based
UDP Floods	Dynamic HTTP	RUDY	Intrusion Attempts
SYN Floods	HTTPS Floods	Slowloris	SQL Injection
Fragmented Floods		Pyloris	#refref
FIN + ACK			xerex

2012 Security Report


Anatomy of an Attack

The Evolving Threat Landscape

Securing Tomorrow's Perimeter

Example Stock Exchange Attack

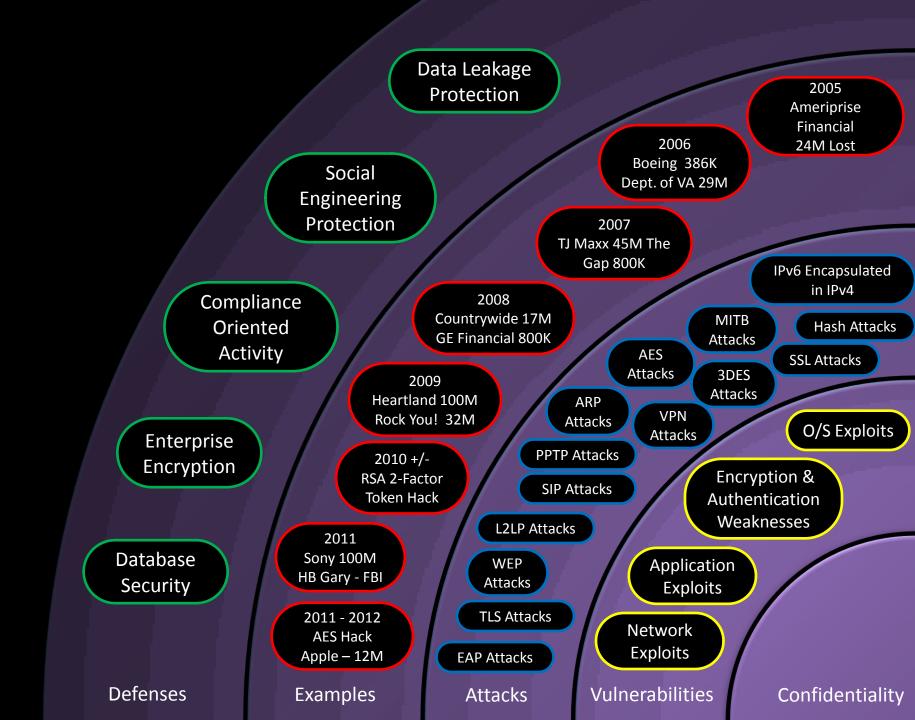
Attack Vector	Time Stamp	Attack Peak
Fragmented UDP Flood	1:00 AM	95 Mbps 10K PPS
LOIC UDP	4:00 AM and 8:00 PM - 11:00 PM	50 Mbps 5K PPS
TCP SYN Flood	1:40 PM	13.6 Mbps 24K PPS
R.U.D.Y	4:00 PM	2.1 Mbps 0.7K PPS
LOIC TCP	11:00 PM - 3:30 AM	500 Kbps 0.2K PPS
Mobile LOIC	6:00 PM- 8:30 PM	86 Kbps 13 PPS
#RefRef	9:45 PM	Few packets

Security Confidentiality,

a mainstream adaptation of the "need to know" principle of the military ethic, restricts the access of information to those systems, processes and recipients from which the content was intended to be exposed.

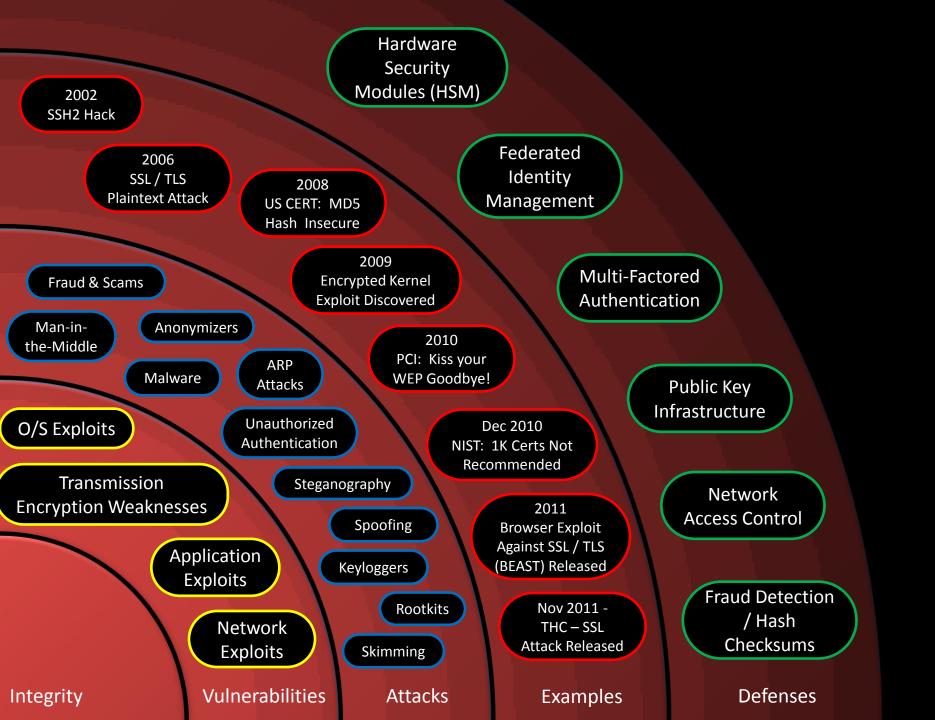
ity

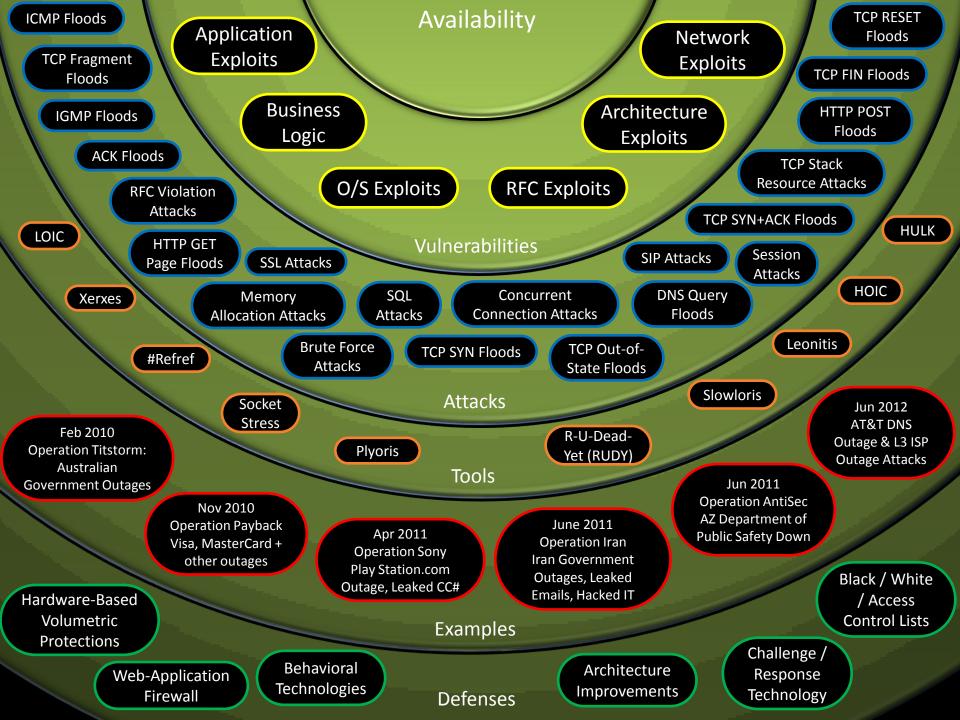
Security Integrity

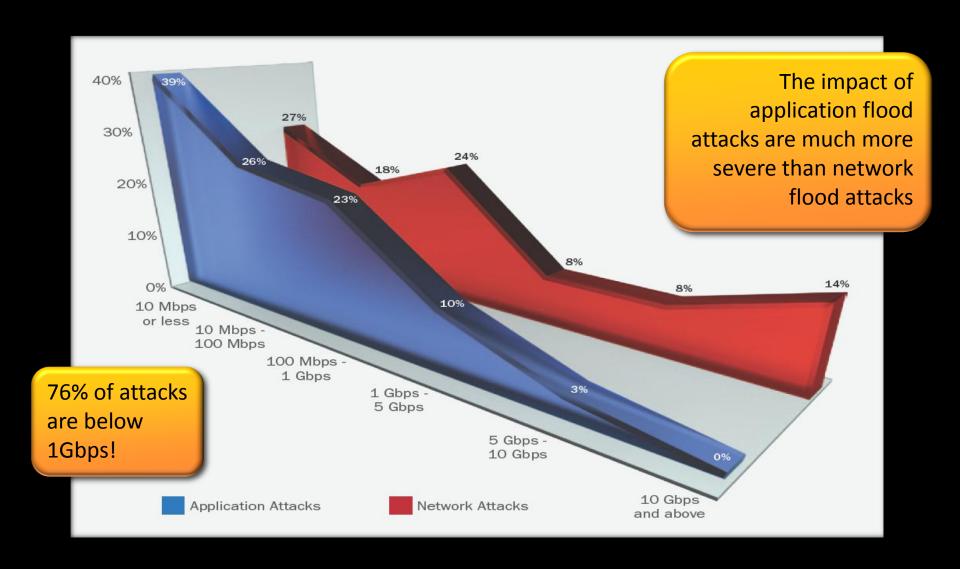

in its broadest meaning refers to the trustworthiness of information over its entire life cycle.

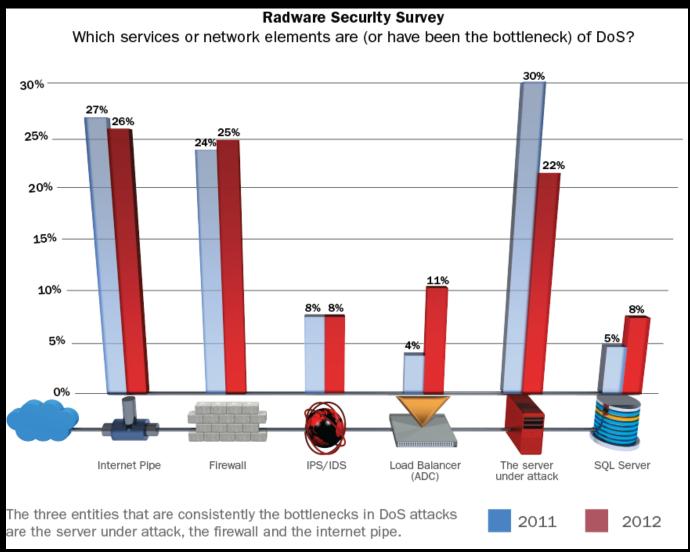
Security Availability

is a characteristic that distinguishes information objects that have signaling and self-sustaining processes from those that do not, either because such functions have ceased (outage, an attack), or else because they lack such functions.







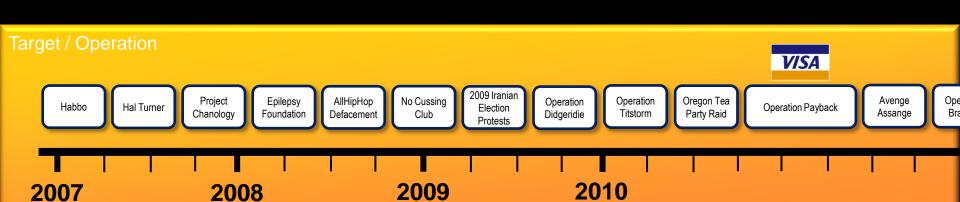


Size Does Not Matter. Honest.

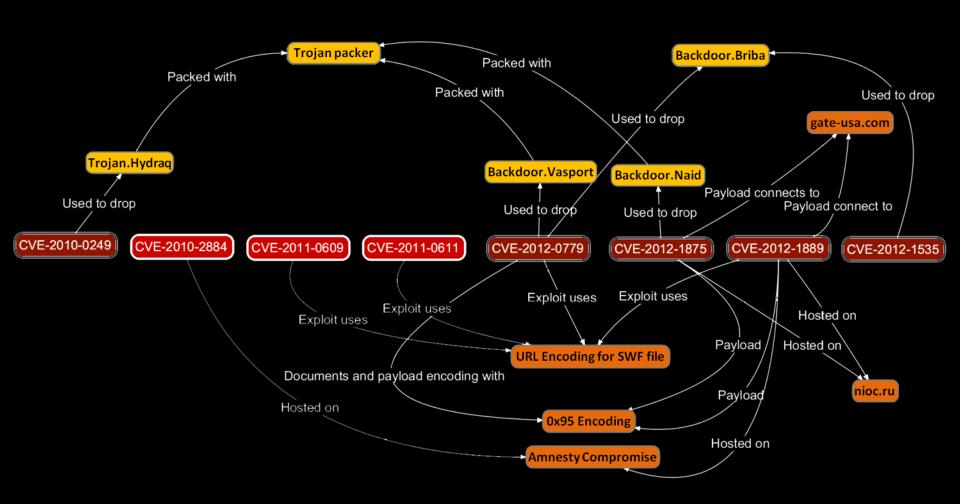
Main Bottlenecks During DoS Attacks - ERT Survey

Confidentiality

Integrity



Availability



APTs & Zero-Day Resolution Intensifies

Defense Blind Spot Map

Protection Purpose	Firewall	IPS	WAF	Router ACLs	Next Gen FW	Anti-DoS Appliance (CPE)	DLP	Cloud Anti-DoS
Data-At-Rest Protections (Confidentiality)								
Data-At-Endpoint (Confidentiality)								
Data-In-Transit (Confidentiality)								
Network Infrastructure Protection (Integrity)								
Application Infrastructure Protection (Integrity)								
Volumetric Attacks (Availability)								
Non-Volumetric Resource Attacks (Availability)								

Gartner Sep 2012: Anti-DoS "BlindSpot"

Table 6. Defense Approaches by Attack Type						
DoS Defense Component	Vulnerability Exploitation	Network Flood	Infrastructure Exhaustion	Target Exhaustion		
Network devices	No	No	Some	Some		
Overprovisioning	No	Yes, bandwidth	Yes, infrastructure	Yes, servers and applications		
Firewall and network equipment	No	No	Some	Some		
NIPS or WAF security appliances	Yes	No	No, usually part of the problem	No, NIPS resource may be exhausted before the target's		
Anti-DoS box (stand- alone)	No	No	Yes	Yes		
ISP-side tools	No	Yes	Rarely	Rarely		
Anti-DoS appliances (ISP-connected)	No	Yes	Yes	Yes		
Anti-DoS specialty provider	No	Yes	Yes	Yes		
CDN	No	Yes	Yes	Somewhat — limited to common		

Gartner Sep 2012: Anti-DoS "BlindSpot"

Table 6. Defense Approaches by Attack Type						
DoS Defense Component	Vulnerability Exploitation	Network Flood	Infrastructure Exhaustion	Target Exhaustion		
Network devices	No	No	Some	Some		
Overprovisioning	No O	Yes, bandwidth	Yes, infrastorture	Yes, server application		
Firewall and network equipment	No O	No O	Some	Some		
NIPS or WAF security appliances	Yes	No	No, usually part of the probler	No, NIPS resource may be existed before the target's		
Anti-DoS box (stand- alone)	No 🛑	No O	Yes	Yes		
ISP-side tools	No 🛑	Yes	Rarely	Rarely		
Anti-DoS appliances (ISP-connected)	No O	Yes	Yes	Yes		
Anti-DoS specialty provider	No 🛑	Yes	Yes	Yes		
CDN	No	Yes	Yes	Somewhat limited to mon		

What We Should Work Toward

- 100% Architecture Protection. Varied Deployment Models.
- Understand the behavior beyond protocol and content
- It's an eco-system....collaboration is key
- Emergency response & triage: Practice cyber war rooms
- Integrate offense into your security strategies.

Perimeter Defense Planning

Perimeter Defense Planning

Perimeter Defense Planning

Emergency Response Teams & Cyber War Rooms

- Audits
- Policies
- Technologies

Lack of Expertise

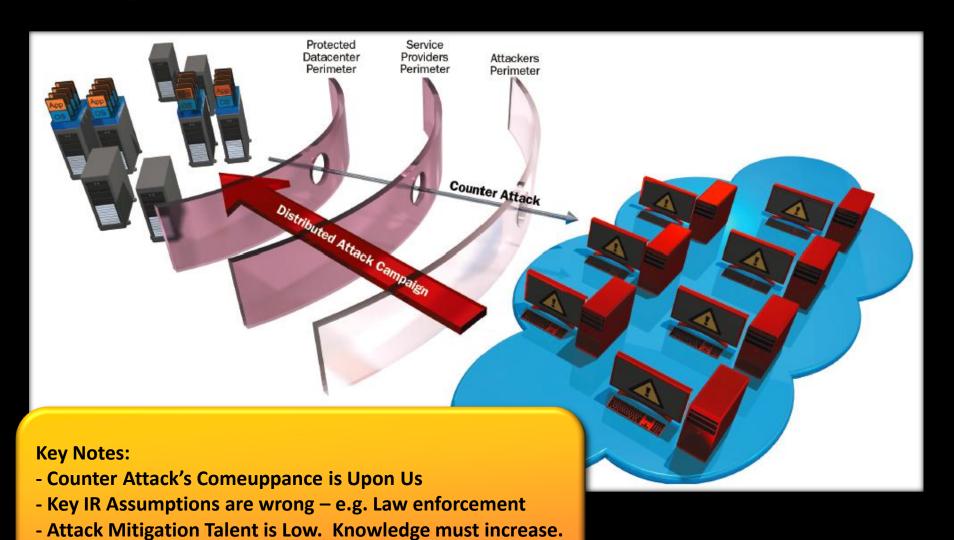
Attack Time

 Emergency Response Team that "fights"

Forensics

- Analyze what happened
- Adjust policies
- Adapt new technologies

Required expertise during attack campaign


- Complex risk assessment
- Tracking and modifying protections against dynamically evolved attacks
- Real time intelligence
- Real time collaboration with other parties
- Counter attack methods and plans
- Preparation with cyber "war games"

Strategy

- Corporate Policies are IR not ERT focused

The Best Defense Is A...

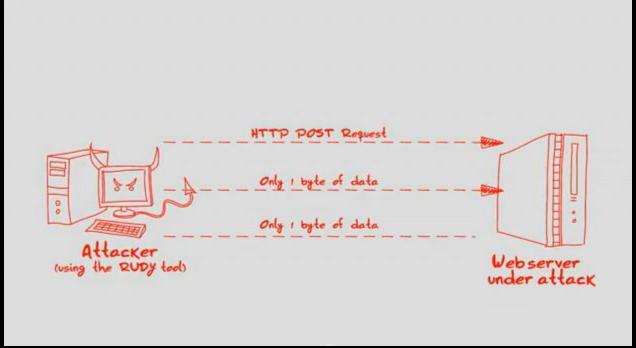
Anatomy of an Attack
The Evolving Threat Landscape
Securing Tomorrow's Perimeter

Recommendations

- 1. Assess DDoS vulnerabilities
- 2. Look beyond large attacks
- 3. Plan ahead Can't stop attacks without a game plan
- 4. Secure potential bottlenecks Which of YOUR devices will fail first?
- 5. Watch what's happening on the network Do you have signals?
- 6. Be aware of all threat surfaces including mobile phones
- 7. Beware of application-layer attacks Not just DDoS anymore
- 8. Watch for blended attacks
- 9. Partner up with companies that know how to counter attack

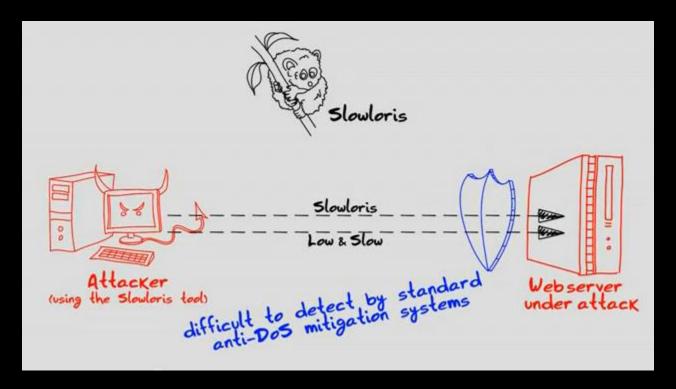
Thank You

Carl Herberger
VP, Security Solutions
Radware
carl.herberger@radware.com



- Slowloris
- Sockstress
- R.U.D.Y.
- Simultaneous Connection Saturation

R.U.D.Y (R-U-Dead-Yet)


R.U.D.Y. (R-U-Dead-Yet?)

R.U.D.Y. (R-U-Dead-Yet?) is a slow-rate HTTP POST (Layer 7) denial-of-service tool created by Raviv Raz and named after the Children of Bodom album "Are You Dead Yet?" It achieves denial-of-service by using long form field submissions. By injecting one byte of information into an application POST field at a time and then waiting, R.U.D.Y. causes application threads to await the end of never-ending posts in order to perform processing (this behavior is necessary in order to allow web servers to support users with slower connections). Since R.U.D.Y. causes the target webserver to hang while waiting for the rest of an HTTP POST request, by initiating simultaneous connections to the server the attacker is ultimately able to exhaust the server's connection table and create a denial-of-service condition.

Slowloris

Slowloris

Slowloris is a denial-of-service (DoS) tool developed by the grey hat hacker "RSnake" that causes DoS by using a very slow HTTP request. By sending HTTP headers to the target site in tiny chunks as slow as possible (waiting to send the next tiny chunk until just before the server would time out the request), the server is forced to continue to wait for the headers to arrive. If enough connections are opened to the server in this fashion, it is quickly unable to handle legitimate requests.

Slowloris is cross-platform, except due to Windows' ~130 simultaneous socket use limit, it is only effective from UNIX-based systems which allow for more connections to be opened in parallel to a target server (although a GUI Python 4version of Slowloris dubbed PyLoris was able to overcome this limiting factor on Windows)! Evolution to be opened in parallel to a target server (although a GUI Python 4version of Slowloris dubbed PyLoris was able to overcome this limiting factor on Windows)! Evolution to be opened in parallel to a target server (although a GUI Python 4version of Slowloris dubbed PyLoris was able to overcome this limiting factor on Windows)!